
MASARYK UNIVERSITY

FACULTY OF INFORMATICS

}w��������
��������������� !"#$%&'()+,-./012345<yA|
Web applications in Haskell

MASTER’S THESIS

Bc. Pavel Dvořák

Bratislava, autumn 2011

Declaration

I hereby declare that this thesis is my original work and that, to the best of my
knowledge and belief, it contains no material previously published or written
by another author except where the citation has been made in the text.

..
signature

Adviser: RNDr. Libor Škarvada

2

Acknowledgements

I am grateful to my adviser Libor Škarvada for his time, patience, worthwhile
lectures, and also for enabling me and Peter Molnár, who is no longer with us, to
teach a course about functional programming in the last two years.

I am also very grateful to my family and friends for their toleration of my con-
stant unavailability, which they must endure during writing of this thesis.

Thank you all.

3

Abstract

The main goal of this thesis has been to provide a description of web development
methods in the programming language Haskell. That includes an exploration
of web frameworks written in Haskell and their comparison.

Furthermore, one of the frameworks, named Yesod, has been extended to inter-
communicate with CouchDB, a document-oriented database system.

Keywords

Haskell, functional programming, HTTP, web development, web frameworks,
web services, CouchDB

4

Contents

1 Introduction 7

2 Web development using Haskell 9

2.1 Hypertext Transfer Protocol . 9

2.1.1 HTTP requests . 10

2.1.2 HTTP responses . 11

2.1.3 HTTP client library in Haskell 12

2.2 Serving content by Haskell . 15

2.2.1 CGI and FastCGI . 15

2.2.2 WAI and Warp . 18

2.2.3 Other implementations . 19

3 Haskell web frameworks 21

3.1 A brief overview of Haskell web frameworks 21

3.1.1 Happstack . 22

3.1.2 Snap . 22

3.1.3 Yesod . 22

3.1.4 Other active projects . 23

3.2 Comparing Happstack, Snap and Yesod 24

5

3.2.1 URL mapping . 24

3.2.2 Database handling . 25

3.2.3 Markup . 26

4 CouchDB and Persistent 29

4.1 CouchDB: a document-oriented database system 29

4.1.1 JavaScript Object Notation . 30

4.1.2 Views . 31

4.1.3 CouchDB in Haskell . 31

4.2 Extending Yesod for CouchDB . 32

4.2.1 Implementing the Persistent back end 32

5 Conclusions and future work 34

6

Chapter 1

Introduction

I just had to take the hypertext idea and connect it to the TCP

and DNS ideas and � ta-da! � the World Wide Web.

— SIR TIM BERNERS-LEEI

The World Wide Web (or the Web for short) has been the most widely used in-
ternet service over the past decade and a half (the detailed history of the Web and
the Internet is described in [2]). The merits of its gradual expansion are indis-
putable: the Web has facilitated not only communication and information access,
but also changed for the better the lives of many people. Regardless of the initial
overoptimistic enthusiasm, which has been topped off with the dot-com bubble
in the beginning of 2000s, the more realistic predictions look promising. It does
seem that the Web is going to be with us for a long time.

The service was originally designed for exchange of hypertext documents only,
but as the time went and the number of connected users rose, the requirements
increased as well. The simple static content ceased to be enough and the users
wanted it to be more complex and dynamic. Therefore Sir Tim Berners-Lee
founded the World Wide Web ConsortiumII (or W3C for short), an international
standard organization for the Web. The main goal of W3C is to extend the orig-
inal Web specifications according to the needs of the industry. Prior to the for-
mation of W3C, the web browser vendors had been adding proprietary features
to their software, which led to incompatibility problems and confusion.

However, the specifications issued by W3C relate mainly to the client (i.e. web
browser) side of the service. These specifications include, for example, Hyper-
Text Markup Language (or HTML for short) and Cascading Style Sheets (or CSS

IThe original creator of the Web; for his complete biography, see [1].
IIHomepage: http://www.w3.org/.

7

http://www.w3.org/

for short). The former standard is used for creating structured documents, the lat-
ter for shaping their visual aspect. With such tools, web developers are able to
form a complex content. But what about the dynamic part? Are there any spec-
ifications for writing web applications that respond to the user input? Well, par-
tially. The client side scripting is mostly done with ECMAScript (commonly
known as JavaScript) developed by Sun Microsystems and afterwards standard-
ized by Ecma International. The server side, which functions for processing re-
quests and serving the corresponding responses, is based on a few rare changing
standards (for example, W3C introduced the Common Gateway Interface, or
CGI for short, that specifies the way in which the code is executed by a web
server). It means that for a web development (on the server side), virtually
any programming language can be used.

In the meantime, functional programming boomed. New languages, such as
Scala and F#, emerged. The declarative paradigm became more popular than
ever and started to be employed outside of academia. One of these successful lan-
guages is Haskell,III a strongly typed purely functional language. Despite being
designed by an academic committee, Haskell found its way to general public and
currently, the language is maintained by community, whose members provided
many libraries. Haskell is even being used for commercial purposes.IV For more
information about programming in Haskell, we recommend sources [4, 5, 6, 7].

This thesis is about utilizing the programming language Haskell for development
of web applications. Currently, there has been a rapid progress in this area,
particularly caused by growing interest in web development in general. Also,
the growth has been accelerated by introducing new ideas, such as enumerators,
a concept that improves effectiveness of monadic computation dramatically.

The following chapter contains a brief description of the Hypertext Transfer Pro-
tocol and the basics of deploying web applications in Haskell.

In the third chapter, we introduce web frameworks, which make web develop-
ment much easier. We also compare three major Haskell web frameworks.

The fourth chapter describes our improvement of the framework Yesod. We have
created a Haskell module that creates a link between the Yesod database interface
and the document-oriented database system CouchDB.

And finally, the last chapter summarizes our text and proposes some of the next
steps that can be done in the presented subject-matter.

IIIHomepage: http://haskell.org/; for a comprehensive language definition, see [3].
IVSee the Industrial Haskell Group: http://industry.haskell.org/.

8

http://haskell.org/
http://industry.haskell.org/

Chapter 2

Web development using Haskell

Our language is state-free and lazy

The rest of the world says we're crazy

But yet we feel sure

That the pure will endure

As it makes derivation so easy.

— JOY GOODMANI

The Web is basically an internet service that is provided by web servers. A web
client communicates with one of these servers through the Hypertext Trans-
fer Protocol (or HTTP for short), alternatively through its secure version called
HTTPS.

The exact specification of HTTP is defined in the document [8].

2.1 Hypertext Transfer Protocol

On the application level, HTTP works on the principle that the client sends a re-
quest, to which the server answers with a response. The protocol itself is stateless,
so in Haskell, it would be natural to use a function with the following type sig-
nature: communicate :: Request → IO Response. As we connect to the out-
side world, the IO type constructor denotes the input/output monad; the types
Request and Response would be data structures defined here later.

What should a proper HTTP communication look like?

IA researcher at University of Cambridge.

9

2.1.1 HTTP requests

An HTTP request consists of a request-line and optional request headers and
a request body. The request-line includes a request method and a path name. All
the data are separated by the <CR><LF> sequence (hexadecimal codes 0x0D and
0x0A in the ASCII character set).

HTTP request methods

A request method determines the way in which the request is going to be handled.
The current version of the protocol defines eight different request methods (see
[8, section 5.1.1]), but in practice, mainly these three methods are used:

The GET method
The method is the commonest one. It is for example used when the user
enters an address of a web site to the browser or when they traverse to
another document through a link on a web page. This method is usually
cached (both on the client side and on the server side), in order to save some
bandwidth.

The HEAD method
The same as the previous method, except that the response body is omitted
and only the response headers are returned. This is useful in situations
where we are not interested in the content and we just want the metadata.

The POST method
With this method, the client can send some nontrivial data to the server.
Apart from transferring binary files, the method is used for submitting
HTML forms. As a rule of thumb, we choose this method when we need
to modify a state of the server; for the read-only access GET mostly suffice.

HTTP path names

A path name is a part of the Uniform Resource Locator (or URL for short) that
serves for an unambiguous identification of the objects on the Web. The path
name begins with a slash symbol and can be seen as a relative path to a file or a di-
rectory. For example, the URL http://example.com/dir/image.png contains
a path name /dir/image.png.

Since HTTP/1.1,II the initial part of the URL has gained in significance, because
the domain name (example.com in the above mentioned URL) is sent as a part
IIThe version of the HTTP standard proposed in 1996. Its revised variant is used nowadays.

10

http://example.com/dir/image.png

of a request in order to distinguish between web sites (with different domain
names) located on a web server. Before that, there was no easy way to serve
multiple web sites using one web server only; the domains had to be separated
by an IP address or by a port number. The technique for accessing multiple
domains on a single host is called virtual hosting.

HTTP request headers and body

A header is a key-value case-insensitive pair separated by a colon. For instance,
the Accept-Charset header specifies one or more character sets (such as UTF-8),
in which the client is able to communicate. Also, the above introduced domain
name is sent in a Host header.

Some of the request methods (namely POST) usually need to carry additional
data. It can be stored in the request body and indicated by a Content-Length

or Transfer-Encoding header. If the request body is present, it is preceded
by an empty line, in order to distinguish it from the headers.

2.1.2 HTTP responses

An HTTP request consists of a status-line and optional response headers and
a response body. The status-line includes a response status code. Again, the data
are separated by the <CR><LF> sequence.

HTTP response status codes

A status code symbolizes a state of the server and is represented by a three-digit
number. The codes are divided into five categories according to their leftmost
digit. Furthermore, in order to provide a human-readable representation, a tex-
tual description is assigned to each such code.

The 1xx status codes
The informational codes stand for provisional requests. Namely, the server
confirms partially processed request (100 Continue) or indicate a need to
change a protocol (101 Switching Protocols).

The 2xx status codes
The success codes are hopefully the commonest ones. When an operation
goes smoothly, the server responds with a simple 200 OK or in a more spe-
cific manner.

11

The 3xx status codes
The redirection codes signal to the client that further action is required.
For example, when a page is moved to another location, it is a good idea to
redirect it by returning the status code 301 Moved Permanently (or tem-
porarily by the code 302 Found) together with the new URL. The client
then resends the request, this time to the corrected location.

The 4xx status codes
The client error codes cover various responses to the problems in the re-
quest. In particular, these codes are used to handle an abstruse request (400
Bad Request), to prevent access (401 Unauthorized and 403 Forbidden)
or to inform about non-existent location (404 Not Found).

The 5xx status codes
The server error codes are reserved for server-side failures, such as a bug
in the web application (500 Internal Server Error) or overload (503
Service Unavailable).

HTTP response headers and body

Similarly to the request, the response can also contain headers and a body. The dif-
ference is that the response body represents a content, e.g., an HTML page. Many
headersIII are possible to use both in the requests and in the responses.

2.1.3 HTTP client library in Haskell

The Haskell HTTP packageIV implements communication on the client side. It
consists of several submodules and we are going to look briefly at the two most
fundamental ones.

Network.HTTP

As one would expect, the module defines data structures for the HTTP request:

data Request a = Request { rqURI :: URI

, rqMethod :: RequestMethod

, rqHeaders :: [Header]

, rqBody :: a

}

IIIFor instance the Date header which denotes the time of the creation of the HTTP message.
IVAvailable at the URL: http://hackage.haskell.org/package/HTTP.

12

http://hackage.haskell.org/package/HTTP

. . . and also for the HTTP response:

data Response a = Response { rspCode :: ResponseCode

, rspReason :: String

, rspHeaders :: [Header]

, rspBody :: a

}

The URI type is a data structure defined in the Network.URIV package and stands
for Uniform Resource Identifier, a little more general concept than a URL. Be-
sides, while the Request contains an enumeration RequestMethod (with data
constructors such as GET, POST etc.), the Response includes a triple of integers
ResponseCode together with a string representing the status message. The data
structure Header occurs both in the Request and Response, just as the body,
which is usually a String type.

We can generate our request by ourselves, assembling the URI using the parseURI
function located in the Network.URImodule. The function returns a Maybe value
which we extract by a function from the module Data.Maybe:

> let fiURI = fromJust $ parseURI "http://www.fi.muni.cz/";

fiHeaders = [Header HdrHost "www.fi.muni.cz"];

fi = Request {rqURI=fiURI, rqHeaders=fiHeaders,

rqMethod=GET, rqBody=""}

> fi

GET http://www.fi.muni.cz/ HTTP/1.1

Host: www.fi.muni.cz

. . . or we can take advantage of the shortcut function getRequest:

> let fi = getRequest "http://www.fi.muni.cz/"

> fi

GET http://www.fi.muni.cz/ HTTP/1.1

Content-Length: 0

User-Agent: haskell-HTTP/4000.2.1

Anyway, for establishing the HTTP communication, we use a basic function
that is called simpleHTTP. It works on a same principle as the above defined hy-
pothetical function communicate. As we can see on the following example, it
takes a Request and returns a value, that is in fact of the type Either Response:
VAvailable at the URL: http://hackage.haskell.org/package/network.

13

http://hackage.haskell.org/package/network

> simpleHTTP fi

Right HTTP/1.1 200 OK

Date: Sat, 24 Dec 2011 14:22:56 GMT

Server: Apache

Content-Location: index.xhtml.cs

Vary: negotiate,accept-language

TCN: choice

Last-Modified: Sat, 24 Dec 2011 00:30:58 GMT

ETag: "104032-3520-4b4cba5b05480"

Accept-Ranges: bytes

Content-Length: 13600

Connection: close

Content-Type: text/html; charset=UTF-8

Content-Language: cs

Since the returning value is within the IO monad, we are able to apply functors,
monadic functions and operators to the response, for example:

> simpleHTTP fi >>= fmap (take 42) . getResponseBody

"<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n<!D"

Network.Browser

If we are interested in more complex features of HTTP, such as authentication,
handling proxy connections or storing cookies, the Network.HTTP module ceases
to be enough. For these purposes, it is better to use the Network.Browser mod-
ule that introduces states. That corresponds more with a real web browser.

The module also automatizes some processes; for illustration, let us see a redirect
from the URL http://fi.muni.cz/ to the URL http://www.fi.muni.cz/:

> browse . request $ getRequest "http://fi.muni.cz/"

Sending:

GET / HTTP/1.1

Host: fi.muni.cz

[...]

301 - redirect

Redirecting to http://www.fi.muni.cz/ ...

[...]

14

http://fi.muni.cz/
http://www.fi.muni.cz/

2.2 Serving content by Haskell

Until now, we have presented mainly the client side of the web development — it
is vital for understanding of the server side, that concerns us primarily. In other
words, from now on, we are going to focus on the server side only.

There are two ways to operate a web application: connect it with a stand-alone
web server through an interface or use a native web server. The former choice
takes advantage of established procedures, the latter is essentially a more straight-
forward method, because we do not need to install and configure another piece
of software. Nevertheless, in Haskell, both options are possible.

2.2.1 CGI and FastCGI

The classic way of deploying a web application is to use the Common Gate
Interface. We have already mentioned it briefly in the introduction — CGI is
a web standard defined in the document [9]. As the name suggests, it belongs
to the interface category and extends capabilities of a web server (for example
the Apache HTTP ServerVI or lighttpdVII).

Network.CGI

For employing CGI in Haskell, we need to write a web application which has
the Network.CGIVIII module included, compile it and configure the web server
to execute the application by CGI. When the web server receives a corresponding
HTTP request, it passes the environment variables (such as the request headers)
on through CGI to the application. Then CGI waits for the result of the compu-
tation and delivers it back to the server. The following example is a simple CGI
script in Haskell that displays a “Hello, world!” text for every HTTP request:

import Network.CGI

main :: IO ()

main = runCGI . handleErrors $ output "Hello, world!"

The function runCGI just runs the web service; the function handleErrors,
which could be in this particular case safely omitted, returns the 500 status code
in case of application failure; the function output turns a string to a monad.
VIHomepage: http://httpd.apache.org/.
VIIHomepage: http://www.lighttpd.net/.
VIIIAvailable at the URL: http://hackage.haskell.org/package/cgi.

15

http://httpd.apache.org/
http://www.lighttpd.net/
http://hackage.haskell.org/package/cgi

Considering that we have got the Apache server installed and our little CGI
script is saved in the path /var/www/hello_world.hs, we compile it by invoking
the ghc --make -o hello_world.cgi hello_world.hs command. Then, we
configure the web server in this manner:

<VirtualHost *:80>

ServerName example.com

Options +ExecCGI

AddHandler cgi-script .cgi

DirectoryIndex hello_world.cgi

DocumentRoot /var/www/

</VirtualHost>

The VirtualHost directive denotes a domain-based hosting running on the de-
fault HTTP port number. It contains entries that arrange execution of the desired
CGI script. Provided that the DNS record example.com points to our machine
and the web service is running, after entering the correct URL, the web server
should return the expected response.

We can also obtain the environment variables using one of the few convenient
functions, such as requestMethod, requestHeader and pathInfo to utilize their
output it in our code. Or we can alter the HTTP response using functions such
as setStatus and setHeader. Yet again, all the functions are monadic ones.

Network.FastCGI

The original CGI approach works, but it is not very efficient, because it spawns
a new process for every request. That is the reason for introducing FastCGI,IX

a faster and more secure variant of CGI. It reduces the overhead by capability to
process several requests at once.

The Haskell FastCGI module Network.FastCGIX works on similar principles
as the regular CGI. The only difference is that we replace the function runCGI

with one of the functions located in the FastCGI module. These functions are
compatible with the regular CGI, so the rest of the code remains the same.

The transition to FastCGI takes place in this manner: firstly, we need to have
the FastCGI web server module installed. Secondly, our little CGI example must
be modified to use the other interface. The rewritten code would look like this:
IXHomepage: http://www.fastcgi.com/.
XAvailable at the URL: http://hackage.haskell.org/package/fastcgi.

16

http://www.fastcgi.com/
http://hackage.haskell.org/package/fastcgi

import Network.FastCGI

main :: IO ()

main = runFastCGI $ output "Hello, world!"

To distinguish it from a regular CGI, it is better to compile it with a different suf-
fix (using the ghc --make -o hello_world.fcgi hello_world.hs command).
Apart from that, the Apache configuration also undergoes a slight change:

<VirtualHost *:80>

ServerName example.com

Options +ExecCGI

FastCGIExternalServer hello_world.fcgi -socket hello_world.sock

DirectoryIndex hello_world.fcgi

DocumentRoot /var/www/

</VirtualHost>

In the configuration, we have specified a socket file that the FastCGI process
employs for communication with the web server. The other possibility is to
use the -host option, which orders the process to communicate through a TCP
port. The former way is simpler, the latter is better when we operate the service
on several servers.

The both examples run on a single thread only. To achieve a full potential, it is
possible to compel FastCGI to take advantage of multiple threads. In particular,
when running a multi-core system, the multithreaded program is more efficient.
If we wanted to spread the previous example to eight threads, we would write
the following code:

import Network.FastCGI

main :: IO ()

main = runFastCGIConcurrent 8 $ output "Hello, world!"

Moreover, the GHC compiler needs to have the -threaded option enabled. It
means that in this case, we initialize the compilation by invoking the ghc --make

-threaded -o hello_world.fcgi hello_world.hs command.

17

2.2.2 WAI and Warp

The other typical way to operate a Haskell web application is to use the Web Ap-
plication InterfaceXI (or WAI for short) that is written solely in Haskell. Simi-
larly to CGI, it is an interface for communication between a web application and
a web server. WAI works best in connection with a native Haskell web server
named Warp,XII but other back ends (e.g. CGI), which are called handlers, are
supported as well. Both WAI and Warp are written by the same developer and
together, they constitute the fastest Haskell platform for running web applica-
tions (as described in the article [10]).

A “Hello, world!” application is not as straightforward as with the CGI modules:

{-# LANGUAGE OverloadedStrings #-}

import Network.Wai

import Network.Wai.Handler.Warp

import Network.HTTP.Types

main :: IO ()

main = run 8000 (const . return $

responseLBS statusOK [] "Hello, world!")

The first line of the code is a language extension that implicitly converts ordinary
strings to other forms (the instances of the IsString type class). WAI utilizes
the data type ByteString for the sake of effectiveness. So, instead of converting
our string manually, it is much easier to just load the extension.

The function run, that is imported from the Warp module, runs the web server
with a default configuration on a specified port number. It also takes a value,
which has a type of Application. It is a type synonym for a familiar type
Request → Iteratee ByteString IO Response. Except for the enumerator
Iteratee and the ByteString, the type remind us the above presented HTTP
principles.

To return an IO response for every request, the const and return functions are
employed. Furthermore, the function responseLBS returns a lazy byte string
response that consists of a status code,XIII a list of headers and a body.

XIAvailable at the URL: http://hackage.haskell.org/package/wai.
XIIAvailable at the URL: http://hackage.haskell.org/package/warp.
XIIIThe HTTP 200 OK status returning function statusOK is located in the Network.HTTP.Types

module.

18

http://hackage.haskell.org/package/wai
http://hackage.haskell.org/package/warp

When we run the code using the runhaskell command or by compiling it first
and executing the output binary thereafter, the application should be accessible
at the URL http://example.com:8000/.

It is worth mentioning that the Network.Waimodule does not contain any helper
functions. To work with the interface effectively, it is better to use the modules
located in the wai-extra package.XIV They offer functionality such as request
parsing or redirecting.

2.2.3 Other implementations

There are many other projects that provide facilities for serving web applica-
tions written in Haskell, even though they are not as powerful and common
as FastCGI or Warp. But they could come in useful nonetheless.

Hack2

The second version of the web interface HackXV is very easy to use and provides
a few back ends (e.g. for Warp). In many ways, its modules resemble the WAI
project. Hack was initially inspired by a similar project called RackXVI that is
a simplistic web interface for applications written in the Ruby programming lan-
guage.

Hyena

The Hyena projectXVII could be called a rather experimental web server. It is
probably the first announced (see [11]) implementation of a web server that is
based on the Iteratee data structure. Accidentally, one of its modules is called
Network.Wai, which could lead to possible conflicts with the WAI module.

Lucu

The web server LucuXVIII was designed mainly with regard to RESTful appli-
cations. REST is an abbreviation for the Representational State Transfer and

XIVAvailable at the URL: http://hackage.haskell.org/package/wai-extra.
XVAvailable at the URL: http://hackage.haskell.org/package/hack2.
XVIHomepage: http://rack.rubyforge.org/.
XVIIAvailable at the URL: http://hackage.haskell.org/package/hyena.
XVIIIAvailable at the URL: http://hackage.haskell.org/package/Lucu.

19

http://example.com:8000/
http://hackage.haskell.org/package/wai-extra
http://hackage.haskell.org/package/hack2
http://rack.rubyforge.org/
http://hackage.haskell.org/package/hyena
http://hackage.haskell.org/package/Lucu

denotes a kind of web-based application programming interface. Since Lucu is
intended to run behind a reverse proxy server, it does not have implemented ad-
vanced features such as logging or client filtering, although it is a rather large
project when compared with the others.

Webserver

And the last project in question is simply named Webserver.XIX Its easy structure
and plainness makes it look like a good candidate for educational purposes, but
there are currently better options, namely the Hack2 project.

XIXAvailable at the URL: http://hackage.haskell.org/package/webserver.

20

http://hackage.haskell.org/package/webserver

Chapter 3

Haskell web frameworks

You don’t need a framework. You need a painting, not a frame.
— KLAUS KINSKII

A software framework is a collection of libraries designated for a specified task. It
introduces best practices that try to prevent a programmer from code repetition
and monotonous work. In contrast to an ordinary software library, a software
framework determines a control flow of a program, i.e., it specifies the overall
architecture of an application, frequently by employing one of architectural pat-
terns, such as Model-view-controller (or MVC for short).

A web frameworkII is a software framework intended for development of web
applications. It usually contains facilities for communication with a database
management system, template processing, URL mapping and others.

3.1 A brief overview of Haskell web frameworks

In Haskell, there is more than a dozen web frameworks available, but not all are
quite usable. Some of them ceased to be maintained, some are still immature.
For instance, Alson Kemp, author of the Turbinado web framework, abandoned
the one-man development in the beginning of 2010 after he had found out that
Haskell does not satisfy his needs (for his full announcement, see [12]).

Nevertheless, let us take a brief look at the currently active Haskell web frame-
works. We start with the three major ones.

IA famous German actor and director.
IISometimes called a web application framework.

21

3.1.1 Happstack

The Haskell application server stackIII (or Happstack for short) is originally based
on a now discontinued project called HAppS.IV It comes with its own web server,
but it is possible to replace it with the FastCGI or Hack2 back end. Also, the de-
veloper of the WAI project planned to add Happstack support in a near future
(as mentioned in [10, page 85]).

For a long time, Happstack lacked a proper manual, fortunately one of the devel-
opers began to write a tutorial [13]. Since Happstack is a large piece of software
that has been maintained for years, there exists its lite version,V which could help
with the initial understanding.

3.1.2 Snap

As described in [14], SnapVI is a web framework that provides reusable web com-
ponents called snaplets, which are similar to Java applets. Similarly to Happstack,
a developer in Snap can utilize its built-in web server or optionally, to choose be-
tween the FastCGI or Hack2 back end. But the Snap server is usually sufficient,
since it was designed with efficiency in mind.

There is no official comprehensible manual for Snap, only a collection of docu-
ments [15]. In comparison with Happstack, Snap is much younger project and
its first version has been published in 2010.

3.1.3 Yesod

The third described web framework is called Yesod.VII Its name, which comes
from Hebrew, means “foundation” in an ecclesiastic sense; it points out that
the framework lays firm foundations for web development. The project emerged
around a same time as the Snap framework and since then, it has been very active.

Originally, the author of Yesod had maintained a built-in web server as well, but
as the time went, he decided to improve it to such an extent that the server could
be employed in other configurations. He released it as separate packages that we
today know as the WAI and Warp projects.

IIIHomepage: http://happstack.com/.
IVHomepage: http://happs.org/.
VAvailable at the URL: http://happstack.com/docs/happstack-lite/happstack-lite.

html.
VIHomepage: http://snapframework.com/.
VIIHomepage: http://www.yesodweb.com/.

22

http://happstack.com/
http://happs.org/
http://happstack.com/docs/happstack-lite/happstack-lite.html
http://happstack.com/docs/happstack-lite/happstack-lite.html
http://snapframework.com/
http://www.yesodweb.com/

Yesod comes with the excellent documentation [16] that fully covers the topic
in easy to understand style. Thus the framework can be recommended even
for beginners in web developing in Haskell.

3.1.4 Other active projects

These three above described projects are the most active and polished ones. But
there are other web frameworks that are worth mentioning as their development
still have not completely faded away.

Miku and Loli

MikuVIII is a very simple framework based on the Hack2 interface that can be
employed particularly for prototyping and developing small web applications.
Its author had written another project, called Loli,IX but it was superseded by
Miku. Loli is a similarly simple framework which provides everything important
in one tiny package.

Scotty

The design of ScottyX as well as Miku has been inspired by a Ruby web frame-
work named Sinatra. Both has been created with minimalist approach in mind.
The main difference lies in the back end — Scotty takes advantage of the WAI
interface.

Salvia

Project SalviaXI contains a modular web server that provides framework features.
Its modularity consists in establishing program interfaces together with han-
dlers that specify restrictions for implementations. The developer then chooses
the right implementation or write his or her own.

VIIIAvailable at the URL: http://hackage.haskell.org/package/miku.
IXAvailable at the URL: http://hackage.haskell.org/package/loli.
XAvailable at the URL: http://hackage.haskell.org/package/scotty.
XIAvailable at the URL: http://hackage.haskell.org/package/salvia.

23

http://hackage.haskell.org/package/miku
http://hackage.haskell.org/package/loli
http://hackage.haskell.org/package/scotty
http://hackage.haskell.org/package/salvia

3.2 Comparing Happstack, Snap and Yesod

We are going to see main features of the three major Haskell web frameworks.
In many ways, they are similar, yet there are things in which they differ. Every
description of the framework feature contains a little example, in order to get
the picture.

3.2.1 URL mapping

When a user sends a request to a web server, the application must decide what
content to serve according to the provided URL and possibly by the HTTP
method. This is the work of the URL mapper — it calls the right function to-
gether with the right parameters by some specified rules.

URL mapping in Happstack

In Happstack, the URL mapper is just a collection of monads that prescribes
the dispatching of the requests. It tries to find a constraint sequentially until it
encounters the one that fits to the request.

urls :: ServerPart Response

urls = msum [nullDir >> index

, dirs "test" $ ok "Hello, world!"

]

index :: ServerPart Response

URL mapping in Snap

The URL mapper in Snap is very similar to the Happstack one, the difference is
that it employs custom monadic functions.

urls :: Application ()

urls = route [("/", index)

, ("/test", writeText "Hello, world!")

]

index :: Snap ()

24

URL mapping in Yesod

Whereas in Yesod, the URL mapper employs the Template Haskell extension, so
it is not just a few monads connected together, but a code that generates another
code. The URL definitions can also be placed in a separate file.

mkYesod "Links" [parseRoutes|

/ Index GET

/test Test GET

|]

getTest :: Handler RepHtml

getTest = defaultLayout [whamlet|Hello, world!|]

3.2.2 Database handling

When the request is dispatched, the right function is called and the application
code is executed, the program needs to manipulate with some data. Normally,
the data are stored in a conventional relational database, but that is not the only
approach available.

Database handling in Happstack

The application model of Happstack is based on a state monad MACIDXII and
separates application logic from the rest of the code. It is a custom Haskell storage
for preserving the state of the application.

data Person = Person {pid :: Int, name :: String}

newtype People = People [Person] deriving (Typeable, Data)

instance Component People where

type Dependencies People = End

initialValue = People []

$(mkMethods ''People ['readPeople])

readPeople :: Query People People

readPeople = ask

XIIIn the abbreviation, the M stands for “monad”, the rest for “atomicity, consistency, isolation and
durability” — the essential attributes of transactional systems.

25

getName :: (MonadIO m) => Int -> m String

getName x = do

(People ps) <- query ReadPeople

return . name . head $ filter (\p -> pid p == x) ps

Database handling in Snap

As we mentioned before, Snap is based on reusable components called snaplets,
so it is possible to choose between many database components. For example, it
is possible to employ the basic SQL library HDBC through the Snaplet-HDBC
package.XIII In this case, we just write the SQL queries right into the application.

getName :: (HasHdbc m c s) => ByteString -> m String

getName x = do

r <- query "SELECT name FROM people WHERE pid = ?" [toSql x]

return . fromSql $ (head r) ! "name"

Database handling in Yesod

Yesod supports many database management systems through a unified interface
called Persistent.XIV Similarly to the object-relational mapping, that is known
from the world of object-oriented languages, it encapsulates the access to vari-
ous database back ends. If we write a code for database manipulation, it should
uniformly work for completely different database systems.

getName :: (PersistBackend b m) => Int -> b m String

getName x = do

Just (_, p) <- selectFirst [PId ==. x] []

return $ personName p

3.2.3 Markup

And finally, when the data are processed, the application must present them to
the user by sending back an assembled response, usually in a form of markup
language, such as HTML. There are many Haskell libraries that arrange the as-
sembling process for us and they are universally applicable, but we are going to
describe the most natural way for each of the frameworks.

XIIIAvailable at the URL: http://hackage.haskell.org/package/snaplet-hdbc.
XIVAvailable at the URL: http://hackage.haskell.org/package/persistent.

26

http://hackage.haskell.org/package/snaplet-hdbc
http://hackage.haskell.org/package/persistent

Markup in Happstack

A typical Haskell approach for generating a marked-up output is to use com-
binators — a set of functions that can be combined together using operators.
In Happstack, a preferable solution is to employ the BlazeHtml library.XV It
supports both fourth and fifth version of HTML and even XHTML.

page :: String -> String -> Html

page heading content =

H.html $ do

H.head $ do

H.title $ toHtml heading

H.body $ do

if null content

then H.p $ toHtml content

else H.p $ toHtml "Hello, world!"

Markup in Snap

It is universally considered as a good practice to separate the markup from the rest
of the application. Since some HTML coders do not even know how to program,
as they are sometimes specialized in the markup languages exclusively, it is com-
mon to introduce a template system. Basically, the templates are the same as static
HTML pages. The difference is that they are processed first and a set of selected
tags denote places that should be replaced by a generated code. Snap supports
Heist,XVI a template engine that is inspired by the Lift web framework.XVII

<html>

<head>

<title><heading/></title>

</head>

<body>

<apply template="content"/>

</body>

</html>

XVAvailable at the URL: http://hackage.haskell.org/package/blaze-html.
XVIAvailable at the URL: http://hackage.haskell.org/package/heist.
XVIIHomepage: http://liftweb.net/. It is written in the Scala language.

27

http://hackage.haskell.org/package/blaze-html
http://hackage.haskell.org/package/heist
http://liftweb.net/

Markup in Yesod

And finally, Yesod employs its own template language called Hamlet.XVIII It
is not the only available Yesod module for code generation — in addition, we
can produce a CSS code with template languages Cassius and Lucius and some
JavaScript transformation with Julius.XIX

!!!

<html>

<head>

<title>#{heading}

<body>

$if null content

<p>#{content}

$else

<p>Hello, world!

XVIIIAvailable at the URL: http://hackage.haskell.org/package/hamlet.
XIXTogether, they are known as “Shakespearean templates”.

28

http://hackage.haskell.org/package/hamlet

Chapter 4

CouchDB and Persistent

Django may be built for the Web, but CouchDB is built
of the Web. I’ve never seen software that so completely embraces

the philosophies behind HTTP. CouchDB makes Django look
old-school in the same way that Django makes ASP look outdated.

— JACOB KAPLAN-MOSSI

The most frequently used kind of database management system is a relational
one. These systems, which are commonly based on a relational algebra and SQL,
has been employed for data storage for decades. But that is not the only way
of database management. Let us take a look at one particular approach, that has
been inspired by the Web.

4.1 CouchDB: a document-oriented database system

In the last decade, there has emerged a drift towards abandoning of SQL, that has
given rise to structured storages, familiarly known as NoSQL.II CouchDB is one
of these storages. It takes a database as a loosely organized collection of docu-
ments, that can be transformed by views.

CouchDB is written in Erlang, a functional programming language that is fault-
tolerant and highly concurrent, i.e., the service can be easily distributed and
scaled up. Every aspect of CouchDB is web-centric: from application’s point
of view, the data access is provided through a RESTful web service; from user’s
point of view, the databases are administered using a web interface called Futon.

IOne of the main developers of Django, a web framework written in Python.
IIThe abbreviation is sometimes interpreted as “not only SQL”.

29

4.1.1 JavaScript Object Notation

In CouchDB, the data are stored in the JavaScript Object Notation (or JSON
for short), a lightweight data-interchange format. On top of that, the whole
communication resides in sending JSON documents back and forth between
the client and the server.

JSON emerged from JavaScript. The format definition is really simple — values
are encoded in the following basic data types:

• an empty value: null;

• a boolean: true or false;

• a number: e.g. 42 or 3.1415;

• a string: e.g. "foo bar";

• an array: e.g. ["one", 2, "three", true];

• an object: e.g. {"foo": "bar", "baz": 2.71}.

In case a JSON string contains a double quote character, it must be escaped
by a backslash. Furthermore, white space is not significant and the arrays and
the objects are heterogeneous collections. Complex data structures are possible
to create by combining the objects and the other data types.

When we want to work with JSON in Haskell, we can use the Text.JSONIII

package, which represents the format as the following data type:

data JSValue = JSNull

| JSBool Bool

| JSRational Bool Rational

| JSString JSString

| JSArray [JSValue]

| JSObject (JSObject JSValue)

The data type definition should be self-explanatory, maybe except for the Bool

part of the JSRational constructor, that signifies a floating point value. As one
would expect, the module provides us functions for converting JSValue from and
to the JSON document.

IIIAvailable at the URL: http://hackage.haskell.org/package/json.

30

http://hackage.haskell.org/package/json

4.1.2 Views

Since the data are not stored in relational tables, but in JSON collections, their
querying is not straightforward. As explained in [17, chapter 6], they must be
transformed first by a view, which is basically a JavaScript code that is stored
in a database and that is executed by a view call in order to transform the data.

4.1.3 CouchDB in Haskell

To interconnect a Haskell program with a CouchDB database, we could commu-
nicate directly through HTTP by sending requests and processing responses, but
it is much easier to use the Database.CouchDBIV library, that has been created
for this purpose. The library provides functions for establishing a connection
with the database system, for management of documents and for creation and
querying of views. Every interaction with a database is encapsulated in a custom
monad, which is defined as follows:

data CouchMonad a = CouchMonad (CouchConn -> IO (a, CouchConn))

The CouchConn data type represents a connection to a CouchDB database, so
CouchMonad actually executes an exchange of JSON documents between the pro-
gram and the database.

As an illustrative example, we are going to store information about a person
to a CouchDB database named south_park:

> conn <- createCouchConn "localhost" 5984

> let sp = db "south_park"

> let eric = JSObject $ toJSObject

[("name", JSString $ toJSString "Eric Cartman"),

("age", JSRational False 9)]

> (doc, rev) <- runCouchDBWith conn $ newDoc sp eric

We have established a connection with a local CouchDB server, created a JSON
document and sent it to the database. The interaction then returned a pair that
contains a document identifier and its revision. We can use this information later,
for example to get the document back from the database:

IVAvailable at the URL: http://hackage.haskell.org/package/CouchDB.

31

http://hackage.haskell.org/package/CouchDB

> do {(Just (_, _, x)) <- runCouchDBWith conn $ getDoc sp doc;

putStrLn . render $ pp_value x}

{"_id": "7d4ffcae98cdba9a7f6992470a00115e",

"_rev": "1-28be4e4fca34e9811b4fbc85eb7aaea4",

"name": "Eric Cartman", "age": 9}

This time, the interaction has returned a Maybe triple, since it is not certain
whether a document with the given identifier occurs in the database. The first
two components of the triple again signify the identifier and the revision, so they
are just omitted and only the third value is passed on. Furthermore, we have
printed a human-readable representation of the document using the pp_value

and render functions from the Text.JSON.Pretty module. The _id and _rev

keys points to textual forms of the identifier and the revision, respectively.

4.2 Extending Yesod for CouchDB

Why we have dealt with the CouchDB database system in the foregoing text?
CouchDB is not even written in Haskell, let alone it does not relate to the web
development directly, although it is an example of a successful web application.

The reason is that we had created an interface between it and the Yesod web
framework, in order the Yesod users could store their data in CouchDB databases
through the Persistent module.

4.2.1 Implementing the Persistent back end

To implement own database back end for the Persistent module, it is necessary
to write an instance of the PersistBackend type class. Currently, it contains
13 functions that select, insert, update and delete the data. For this purpose,
we have employed the above described Database.CouchDB module. The most
difficult part was to filter the data — with a relational database system, we would
normally form an SQL query that would choose only the items we are interested
in. But with CouchDB, it is necessary to write a view first, so we had to generate
a proper code in JavaScript, save it as a view and only then we could execute it
and get the desired data.

The further step is to convert the JSON documents to a Persistent internal data
type. This has been done by writing the PersistValue instance of the JSON type
class, which means that the values are converted implicitly.

32

The last part is to provide functions for establishing a database connection and
a configuration structure, together with an instance of the PersistConfig type
class. Persistent introduces a connection pool that maintains the connections
for us and the biggest problem lies in choosing the right pile of monads that
allows us to utilize the connection within the back end functions. In our case, we
had written a reader monad named CouchReader. It instantiates the MonadBase,
MonadBaseControl and MonadTransControl classes. Afterwards, we were able
to work with the established database connection in our implementation.

33

Chapter 5

Conclusions and future work

The trouble with programmers is that you can never tell what
a programmer is doing until it’s too late.

— SEYMOUR ROGER CRAYI

The theoretical goal of this thesis has been to present the fundamentals of de-
velopment applications for the Web with the Haskell programming language.
Namely, we have presented the principles of HTTP, a protocol on that the Web
is built; furthermore, we have shown a few examples of serving content by web
servers written in Haskell; we have also introduced Haskell web frameworks,
that are convenient for building nontrivial web applications, and compared them;
and finally, we have become acquainted with the CouchDB database system and
looked under a hood of Persistent, a database interface used by the Yesod web
framework. And the most importantly, we have seen that there is no single way
to write a web application in Haskell.

The practical part of our thesis resides in writing a module that implements
the CouchDB back end for Persistent. The outcome is far from perfect, but
the code works and we have sent it to the Persistent developers that are going to
integrate it into their codebase. During development of the module, we have also
made minor changes to the Database.CouchDB library that are vital for error-free
running of the CouchDB back end. All the code is available online under a per-
missive license.

Before we proclaim our code to be stable, we must test it properly in order to
enhance the overall robustness. Also, there is much room for improvements of its
efficiency.

IA supercomputer architect, the so-called father of supercomputing.

34

As for the future work in general, there are many ways to extend the Haskell
libraries for web development. We can inspire ourselves by progress of the pop-
ular web frameworks written in other languages, such as Django, Nette or Ruby
on Rails. The biggest pain of writing web application in Haskell is the volatility
of the packages — almost everything is in an experimental phase and the projects
are rapidly changing all the time, so there is no assurance that our application is
going to work with a newer version of a chosen framework. Moreover, the learn-
ing curve is usually placed very high and the benefits of developing web appli-
cations in Haskell become evident in the long term. To conclude with a more
positive fact, there is no problem with the code performance, which is outstand-
ing in overall (see [10, page 82] and [14, page 87]).

Figure 1: A froggie.[18, page 21]

35

Bibliography

[1] Tim Berners-Lee. Longer biography, 2011. Available at the URL http:

//www.w3.org/People/Berners-Lee/Longer.html (November 2011).

[2] Robert H’obbes’ Zakon. Hobbes’ internet timeline 10.1, December
2010. Available at the URL http://www.zakon.org/robert/internet/

timeline/ (November 2011).

[3] Simon Peyton Jones. Haskell 98 Language and Libraries: the Revised Re-
port. Cambridge University Press, 2003. Also available at the URL
http://haskell.org/onlinereport/ (November 2011).

[4] Miran Lipovača. Learn You a Haskell for Great Good! No Starch
Press, 2011. Also available at the URL http://learnyouahaskell.com/

(November 2011).

[5] Paul Hudak, John Peterson, and Joseph Fasel. A gentle introduction
to Haskell. SIGPLAN Notices, 27(5):1–52, May 1992. The updated version
available at the URL http://haskell.org/tutorial/ (November 2011).

[6] Simon Thompson. Haskell: The Craft of Functional Programming. Pearson
Education Limited, 2nd edition, 1999.

[7] Bryan O’Sullivan, John Goerzen, and Donald Stewart. Real World
Haskell. O’Reilly Media, 2009. Also available at the URL http://book.

realworldhaskell.org/read/ (November 2011).

[8] R. Fielding et al. RFC 2616: Hypertext Transfer Protocol — HTTP/1.1,
June 1999. Available at the URL http://www.faqs.org/rfcs/rfc2616.

html (December 2011).

[9] D. Robinson et al. RFC 3875: The Common Gateway Interface (CGI)
version 1.1, October 2004. Available at the URL http://www.faqs.org/

rfcs/rfc3875.html (December 2011).

[10] Michael Snoyman. Warp: A Haskell web server. IEEE Internet Computing
Magazine, 15(3):81–85, May–June 2011.

36

http://www.w3.org/People/Berners-Lee/Longer.html
http://www.w3.org/People/Berners-Lee/Longer.html
http://www.zakon.org/robert/internet/timeline/
http://www.zakon.org/robert/internet/timeline/
http://haskell.org/onlinereport/
http://learnyouahaskell.com/
http://haskell.org/tutorial/
http://book.realworldhaskell.org/read/
http://book.realworldhaskell.org/read/
http://www.faqs.org/rfcs/rfc2616.html
http://www.faqs.org/rfcs/rfc2616.html
http://www.faqs.org/rfcs/rfc3875.html
http://www.faqs.org/rfcs/rfc3875.html

[11] Johan Tibell. Haskell-Cafe mailing list: Hyena announcement, June
2009. Available at the URL http://www.haskell.org/pipermail/

haskell-cafe/2009-June/063058.html (December 2011).

[12] Alson Kemp. Reflections on leaving Haskell, March 2010.
Available at the URL http://www.alsonkemp.com/haskell/

reflections-on-leaving-haskell/ (December 2011).

[13] Jeremy Shaw. Happstack crashcourse, 2011. Available at the URL http:

//happstack.com/docs/crashcourse/index.html (December 2011).

[14] Gregory Collins and Doug Beardsley. The Snap Framework: A web toolkit
for Haskell. IEEE Internet Computing Magazine, 15(1):84–87, January–
February 2011.

[15] Gregory Collins et al. Snap docs, 2011. Available at the URL http://

snapframework.com/docs (December 2011).

[16] Michael Snoyman. Yesod web framework book, 2011. Available at the URL
http://www.yesodweb.com/book (December 2011).

[17] J. Chris Anderson, Jan Lehnardt, and Noah Slater. CouchDB: The Definitive
Guide. O’Reilly Media, 2010. Also available at the URL http://guide.

couchdb.org/editions/1/en/ (January 2012).

[18] Antonín Pavelka. Funkční anotace proteinových segmentů. Bachelor’s the-
sis, Masarykova univerzita, 2006. Available at the URL http://is.muni.

cz/th/99207/fi_b/ (January 2012).

37

http://www.haskell.org/pipermail/haskell-cafe/2009-June/063058.html
http://www.haskell.org/pipermail/haskell-cafe/2009-June/063058.html
http://www.alsonkemp.com/haskell/reflections-on-leaving-haskell/
http://www.alsonkemp.com/haskell/reflections-on-leaving-haskell/
http://happstack.com/docs/crashcourse/index.html
http://happstack.com/docs/crashcourse/index.html
http://snapframework.com/docs
http://snapframework.com/docs
http://www.yesodweb.com/book
http://guide.couchdb.org/editions/1/en/
http://guide.couchdb.org/editions/1/en/
http://is.muni.cz/th/99207/fi_b/
http://is.muni.cz/th/99207/fi_b/

Appendix — on the Haskell
package system

The easiest way to begin programming with Haskell is to install the Haskell Plat-
form,I a software suite containing the up-to-date version of the Glasgow Haskell
Compiler and a few fundamental programs. In particular, these programs are
intended for software development and for installing Haskell modules.

Haskell community produced a lot of modules that extend the basic language
functionality. The amount of work that is devoted to the ecosystem around
the language increases steadily. In order to manage such an effort, a package
system called CabalII was created. The system is able to build module packages
that can be easily compiled on other computers. Furthermore, a package reposi-
tory called HackageIII emerged. The repository is an internet service in which all
the published packages are located.

To simplify the installation even more, the packages can be downloaded and in-
stalled by a command line tool named cabal-install.IV Its biggest advantage
lies in a dependence handling, i.e., if we want to installed a package X that depends
on a package Y, the package Y is automatically downloaded together with all its de-
pendencies and so forth.

Installing Haskell packages

To install a package, we have to know the exact name of the package first. We
can search for it by the search engine Hayoo!V or look through the package list
on the Hackage web site. It is better to use the cabal command directly, though.

IAvailable at the URL: http://hackage.haskell.org/platform/.
IIHomepage: http://haskell.org/cabal/.
IIIHomepage: http://hackage.haskell.org/.
IVAvailable at the URL: http://hackage.haskell.org/trac/hackage/wiki/CabalInstall.
VAvailable at the URL: http://holumbus.fh-wedel.de/hayoo/hayoo.html.

38

http://hackage.haskell.org/platform/
http://haskell.org/cabal/
http://hackage.haskell.org/
http://hackage.haskell.org/trac/hackage/wiki/CabalInstall
http://holumbus.fh-wedel.de/hayoo/hayoo.html

Whenever we use the cabal command, we have to work with the latest package
changes. This can be done by invoking the cabal update command that down-
loads the up-to-date package list. Then we are able to search through the list
by the cabal list command and finally, after finding the right package, to in-
stall it by the cabal install command.

In case we do not have access to the cabal-install tool (or when we lack the di-
rect internet access), the packages can be built manually. It is usually a very te-
dious process that consists of downloading the package, unpacking it and then
invoking the following series of commands:

cabal configure

cabal build

cabal copy

cabal register

On rare occasions, we would not have even the package system installed. In these
awkward situations, these commands would be rather utilized:

runhaskell Setup configure --user --prefix=$HOME

runhaskell Setup build

runhaskell Setup install

For the sake of completeness, we must mention that the packages are installed
into the ∼/.cabal directory and their metadata dwell in the ∼/.ghc directory
by default.

39

	Introduction
	Web development using Haskell
	Hypertext Transfer Protocol
	HTTP requests
	HTTP responses
	HTTP client library in Haskell

	Serving content by Haskell
	CGI and FastCGI
	WAI and Warp
	Other implementations

	Haskell web frameworks
	A brief overview of Haskell web frameworks
	Happstack
	Snap
	Yesod
	Other active projects

	Comparing Happstack, Snap and Yesod
	URL mapping
	Database handling
	Markup

	CouchDB and Persistent
	CouchDB: a document-oriented database system
	JavaScript Object Notation
	Views
	CouchDB in Haskell

	Extending Yesod for CouchDB
	Implementing the Persistent back end

	Conclusions and future work

