Left-to-right methods

Outline (week four)

[0 Summary of the previous lecture.

[0 Regular expressions, the value of RE, characteristics.

[0 Derivation of regular expressions.

O Direct construction of equivalent DFA for given RE by
derivation.

[0 Derivation of regular expressions by position vector.

O Right-to-left search (BMH, CW, BUC).

Petr Sojka PV030 Textual Information Systems

Left-to-right methods

Similarity of regular expressions

Theorem: the axiomatization of RE is complete and consistent.

Definition: regular expressions are termed as similar, when they
can be mutually conversed using axioms Al to All.

Theorem: similar regular expressions have the same value.

Petr Sojka PV030 Textual Information Systems

Left-to-right methods

Length of a regular expression

Definition: the length d(E) of the regular expression E:
O If E consists of one symbol, then d(E) = 1.
d(Vi + V) = d(V1) +d(V2) + 1.
d(V1.V2) = d(V1) +d(V2) + 1.
dV*)=d(V)+ 1.
O d((V)) =d(V)+2

Note: the length corresponds to the syntax of a regular expression.

Petr Sojka PV030 Textual Information Systems

Left-to-right methods

Construction of NFA for given RE

Definition: a generalized NFA allows e-transitions (transitions
without reading of an input symbol).

Theorem: for every RE E, we can create FA M such that
h(E) = L(M).
Proof: by structural induction relative to the RE E:

Petr Sojka PV030 Textual Information Systems

Left-to-right methods

Construction of NFA for given RE (a proof)

Petr Sojka PV030 Textual Information Systems

Left-to-right methods

Construction of NFA for given RE (cont. of a proof)

0 FE=F; - Ey
(uipe)
U0 FE=FE +FEy M;,M;automata for E, E»

(B - LG, mE) = LO0ry) | DT

Petr Sojka PV030 Textual Information Systems

Left-to-right methods

Construction of NFA for given RE (cont.)

0
U
0
U

No more than two edges come out of every state.
No edges come out of the final states.
The number of the states M < 2-d(E).

The simulation of automaton M is performed in O(d(E)T)
time and in O(d(F)) space.

Petr Sojka PV030 Textual Information Systems

Left-to-right methods

NFA simulation

For the following methods of NFA simulation, we must remove the
e-transitions. We can achieve it with the well-known procedure:

1) Q
@@

’

Petr Sojka PV030 Textual Information Systems

Left-to-right methods

NFA simulation (cont.)

We represent a state with a Boolean vector and we pass through
all the paths at the same time. There are two approaches:

U The general algorithm that use a transition table.

O Implementation of the automaton in a form of (generated)
program for the particular automaton.

Petr Sojka PV030 Textual Information Systems

Left-to-right methods

Direct construction of (N)FA for given RE

Let E/ is a RE over the alphabet T'. Then we create FA
M = (K,T,6,qo, F) such that h(E) = L(M) this way:
O We assign different natural numbers to all the occurrences of the symbols
of T in the expression E. We get E’.
O A set of starting symbols Z = {z; : a string of h(E') can start with the
symbol z;, z; # ¢}.
O A set of neighbours P = {x;y; : symbols x; # £ # y; can be next to each
other in a string of h(E")}.
O A set of ending symbols F' = {z; : a string of h(E’) can end with the
symbol z; # €}.
O A set of states K = {qo} U Z U{y; : z;y; € P}.
O A transition function 4:

@ 0(qo,x) contains x; for,Vx; € Z that originate from numbering of z.
@ (xs,y) contains y; for,Vz;y; € P such that y; originates from
numbering of y.

0 F'is a set of final states, a state that corresponds to F is qo.

Petr Sojka PV030 Textual Information Systems

Left-to-right methods

Direct construction of (N)FA for given RE (cont.)

Example 1: R = ab*a + ac + b*ab*.

Example 2: R = ab* + ac + b*a.

Petr Sojka PV030 Textual Information Systems

Derivation of a regular expression

Derivation of a regular expression

Definition: derivation ‘fi—f of the regular expression E by a
string x € T*:
dE
0 —=F.
de
0 For a € T, these statements are true:
E
da
db 0 ifa#b
da e ifa=b
dE+F) _ dE _dF
da T da da
dE dF .
dEF) —a~F+E if e € h(E)
da aB F otherwise
da
d(E™) dE .,
- 2. F
da da

Petr Sojka PV030 Textual Information Systems

Derivation of a regular expression

Derivation of a regular expression (cont.)

O For x = ajas...a,, a; € T, these statements are true

e _ d (_d 4 (dE
dr da, \da,_, dasy \ day '

Petr Sojka PV030 Textual Information Systems

Characteristics of regular expressions

Characteristics of regular expressions

Example: derive E = fi+ fi* + f*ifi by ¢ and f.

Example: derive (o*sle)*cno by o, s, 1, ¢ and osle.

Theorem: h (4E) = {y : 2y € h(E)}.

Example: prove the above-mentioned statement. Instruction: use
structural induction relative to E and z.

Definition: Regular expressions x, y are similar if one of them
can be transformed to the other one by axioms of the axiomatic
theory of RE (Salomaa).

Example: Is there a RE similar to £ = fi + fi* + f*ifi that has
lengths 7, 157

Petr Sojka PV030 Textual Information Systems

Characteristics of regular expressions

Direct construction of DFA for given RE (by RE derivation)

Brzozowski (1964, Journal of the ACM)
Input: RE E over T.
Output: FA M = (K, T,9,qo, F) such that h(E) = L(M).

Q Let usstate @ = {E}, Qo ={E}, i:=1.

© Let us create the derivation of all the expressions of ();_1 by
all the symbols of T'. Into @);, we insert all the expressions
created by the derivation of the expressions of (J;_1 that are
not similar to the expressions of Q.

Q If Q; # 0, we insert Q; into Q, set i := ¢+ 1 a move to the
step 2.

Q For V‘le €QandaeT, we seté(dx,) %, in case that
the expression gF, is similar to the expression %.
(Concurrently 45 € @.)

Q@ Theset F'= IEQ.EEh(%)}.

Petr Sojka PV030 Textual Information Systems

Characteristics of regular expressions

Example: RE= R = (0 + 1)*1.
Q=Q={0+1)1},i=1

Ql— o =BT ={0+1)1+e}
_ {(O—i-l 1+5 — R, (0+211+5 _ (0+1)*1+6} =0

Example: RE= (10)*(00)*1

For more, see Watson, B. W.: A taxonomy of finite automata
construction algorithms, Computing Science Note 93/43,
Eindhoven University of Technology, The Netherlands, 1993.
citeseer.ist.psu.edu/watson94taxonomy.html

Petr Sojka PV030 Textual Information Systems

Characteristics of regular expressions

Exercise

Example : let us have a set of the patterns P= {tis, ti, iti}:
[0 Create NFA that searches for P.

O Create DFA that corresponds to this NFA and minimize it.
Draw the transition graphs of both the automata (DFA and
the minimal DFA) and describe the procedure of minimization.

O Compare it to the result of the search engine SE.

[Solve the exercise using the algorithm of direct construction of
DFA (by deriving) and discuss whether the result automata
are isomorphic.

Petr Sojka PV030 Textual Information Systems

Characteristics of regular expressions

Derivation of RE by position vector |

Definition: position vector is a set of numbers that correspond to the
positions of those symbols of alphabet which can occur in the beginning
of the tail of the string that is a part of the value of the given RE.

Example: Let us have a regular expression:

a . b . ¢ (1)
To denote the position, we are going to use the wedge sign A. So the
expression (1) is represented as:

?\.b*.c (2)

By deriving a denoted expression, we get a new denoted regular
expression. The basic rule of derivation is this:

© |If the operand, by which we derive, is denoted, then we denote the
positions right after this operand. Subsequently, we remove its
denotation. It means that, by deriving the expression (2) by the
operand a, we get:

*
a . . c 3a
Petr Sojka PV030 Textual Information Systems

Characteristics of regular expressions

Derivation of RE by position vector |l

@ Since the construction, which generates also the empty string, is
denoted, we denote the following construction as well:

R S (3b)
Now, by deriving by the operand b of the expression (3b), we get:
a . b . q (4a)

© Since the construction following the construction in iteration is
denoted, the previous constructions have to be also denoted.

© KR (4b)
By deriving the expression (4b) by the operand ¢, we get:
a . b . c A (5)

When a regular expression is denoted this way, it corresponds to the
empty regular expression €.

Petr Sojka PV030 Textual Information Systems

Characteristics of regular expressions

Derivation of RE by position vector Ill

O For every syntactic construction, we make a list of the starting positions
at the initials of the members.

O If a construction symbol equals to the symbol we use for deriving, and it
is located in the denoted position, then we move the denotation in front
of the following position.

O If an iteration operator is located after the construction, and the
denotation is at the end of the construction, then we append the list of
the starting positions, which belong to this construction, to the resulting
list.

O If the denotation is located before a construction, then we append the list
of the starting positions of this construction to the resulting list.

O If the denotation is before the construction which generates also an
empty string, then we append the list of the starting positions of the
following construction to the resulting list.

0 When we want to denote a construction inside parentheses, we must
denote all the initials of the members inside the parentheses.

Petr Sojka PV030 Textual Information Systems

Characteristics of regular expressions

Derivation of RE by position vector: an example

Example: a.b*.c, derived by a, b, c.

Petr Sojka PV030 Textual Information Systems

Part VII

Right-to-left search

Petr Sojka PV030 Textual Information Systems

Right-to-left search

Right-to-left search—principles.
Could the direction of the search be significant?
In which cases?

O one pattern—Boyer-Moore (BM, 1977),
Boyer-Moore-Horspool (BMH, 1980),
Boyer-Moore-Horspool-Sunday (BMHS, 1990).

O n patterns—Commentz-Walter (CW, 1979).

O an infinite set of patterns: reverse regular
expression—Buczitowski (BUC).

Petr Sojka PV030 Textual Information Systems

Right-to-left search of one pattern

Boyer-Moore-Horspool algorithm

1: var: TEXT: array[1..T] of char;

2: PATTERN: array[l..P] of char; |,J: integer; FOUND: boolean;
3: FOUND := false; I:=P;

4: while (I <T) and not FOUND do

5: J :=0;

6: while (J < P) and (PATTERN[P — J] = TEXT[I — J]) do
T: J:=J+1;

8: end while

9: FOUND := (J = P);

10:

11: if not FOUND then
12: I:=I1+SHIFT(TEXT[I - J],J)
13: end if
14: end while

SHIFT(A,J) = if A does not occur in the not yet compared part of the
pattern then P — J else the smallest 0 < K < P such that
PATTERN[P — (J + K)] = A;

Right-to-left search of one pattern

When is it faster than KMP? When O(T'/P)?The time complexity
O(T + P).

Example: searching for the pattern BANANA in text
I-WANT-TO-FLAVOR-NATURAL-BANANAS.

Petr Sojka PV030 Textual Information Systems

Right-to-left search of one pattern

CW algorithm

The idea: AC + right-to-left search (BM) [1979]

const LMIN=/the length of the shortest pattern/
var TEXT: array [1..T] of char; I, J: integer;
FOUND: boolean; STATE: TSTATE;
g: array [1..MAXSTATE,1..MAXSYMBOL] of TSTATE;
F: set of TSTATE;
begin
FOUND:=FALSE; STATE:=q0; I:=LMIN; J:=0;
while (I<=T) & not (FOUND) do
begin
if g[STATE, TEXT[I-J]]=fail
then begin I:=I+SHIFT[STATE, TEXT[I-J1];
STATE:=q0; J:=0;
end
else begin STATE:=g[STATE, TEXT[I-J]]; J:=J+1 end
FOUND:=STATE in F
end
end

Petr Sojka PV030 Textual Information Systems

Right-to-left search of one pattern

Construction of the CW search engine

INPUT: a set of patterns P = {vy,v9,...,v}
OUTPUT: CW search engine
METHOD: we construct the function g and introduce the
evaluation of the individual states w:
© An initial state go; w(qo) = €.
© Each state of the search engine corresponds to the suffix
bmbma1 - .. by of a pattern v; of the set P. Let us define
9(q,a) = ¢, where ¢’ corresponds to the suffix ab,,by41 - - . by
of a pattern v;: w(q) = by ... br1bm; w(¢') = w(q)a.
O g(q,a) = fail for every ¢ and a, for which g(q,a) was not
defined in the step 2.

© Each state, that correspond to the full pattern, is a final one.

Petr Sojka PV030 Textual Information Systems

Right-to-left search of one pattern

CW—the shiftfunction

Definition: shift[STATE, TEXT[I — J]] =
min {A, shift2(STATE)}, where
A = max {shift1(STATFE), char(TEXT[I — J]) — J — 1}.
Particular functions are defined this way:
© char(a) is defined for all the symbols from the alphabet T as the least
depth of a state, to that the CW search engine passes through a symbol
a. If the symbol a is not in any pattern, then char(a) = LMIN + 1, where
LMIN is the length of the shortest pattern. Formally:
char(a) = min {LMIN + 1, min{d(¢)| w(q) = za, x € T*}}.
@ Function shift1(qo) = 1; for the other states, the value is
shift1(q) = min {LMIN, A}, where A = min{k|k = d(¢') — d(q), where
w(q) is its own suffix w(q’) and a state ¢ has higher depth than g}.
© Function shift2(qo) = LMIN; for the other states, the value is
shift2(q) = min{A, B}, where A = min{k|k = d(q') — d(q), where w(q)
is a proper suffix w(q’') and ¢ is a final state}, B = shift2(q’)| ¢’ is a
predecessor of q.

Petr Sojka PV030 Textual Information Systems

Right-to-left search of one pattern

CW—the shiftfunction

Example: P = {cacbaa, aba, acb, acbab, ccbab}.

w(q) | shiftl | shift2
e 1 3
a 1 2
b 1 3
aa 3 2
ab 1 2
bc 2 3
[alblc[X | 3 | 2
a [aab 3 2
MIN=3 i1 (214 aba| 3 | 2
bca 2 2
bab 3 1
aabc 3 2
babc 3 1
aabca 3 2
babca 3 1
babcc 3 1
aabcac 3 2

Petr Sojka PV030 Textual Information Systems

