
Bc. Pavel Dvořák

FI MUNI



 To describe methods used for development 
of web applications written in the Haskell 
programming language.



 The fundamental communication protocol 
of the Web.

 Client sends an HTTP request to a web server. 
The server returns a proper HTTP response.

 Such an interaction is stateless.

 The HTTP specification determines what 
should such a request and a response look 
like.

communicate :: Request -> IO Response



 Our web application has to be run along 
with a web server that listens on a specified 
port.

 Every time when the server receives a request, 
the server passes the request 
to the application and waits for the result.

 In Haskell, there are various possibilities 
for web content serving.



 Common Gateway Interface is a link 
between a web server and a web application.

 With a right configuration, we can run Haskell 
on one of the widely used web servers 
such as Apache or lighttpd.

 Unlike the regular CGI, FastCGI is able to 
process more requests at once, which 
reduces the overhead.

main :: IO ()
main = runFastCGIConcurrent 8 $ output "Hello, world!"



 WAI is a web interface, Warp is a web server.

 They are both written completely in Haskell 
and take advantage of the Iteratee
enumerator.

 The combination is the fastest native way 
for running Haskell web applications.

main :: IO ()
main = run 8000 (const . return $

responseLBS statusOK [] "Hello, world!")



 A collection of libraries designated 
for a specified task, in this case for web 
application development.

 Provides facilities for DBMS, template 
processing, URL mapping…

 In Haskell, there are more than a dozen 
of web frameworks available.



 One of the oldest Haskell frameworks.

 A relatively large piece of software; there is 
a lite version available, though.

 The state of the application can be saved and 
retrieved using the MACID monad.



 A young web framework.

 It provides reusable web components called
snaplets, which are similar to Java applets.

 That means that the framework is very
customisable.



 Also a young framework.

 The WAI and Warp packages originated
from Yesod.

 It employs massively Template Haskell, 
a metaprogramming extension.



 There is no single way to write a web 
application in Haskell.



 To improve substantially one of the described 
Haskell web frameworks.



 A unified interface between one of the several 
database management systems and 
the Yesod web framework.

 Persistent derives a database scheme 
from a data structure in our web application 
and automatically generates database 
queries.

 Currently, it supports PostgreSQL, SQLite, 
MySQL, and MongoDB.



share [mkPersist sqlSettings, mkMigrate "migrateAll"] [persist|
Person

firstName String
lastName String
age Int
PersonName firstName lastName

|]

main :: IO ()
main = withSqliteConn ":memory:" $ runSqlConn $ do

runMigration migrateAll
johnId <- insert $ Person "John" "Doe" 26
x <- selectList [PersonAge >. 21] [LimitTo 10]
liftIO $ print x
return ()



 A NoSQL, document-oriented database 
system written in Erlang.

 Reliable, fault-tolerant, highly concurrent.

 It provides a RESTful web service together 
with a user-friendly web interface called 
Futon.

 Every piece of information is encoded 
into the JSON format.

 Data transformation done by JavaScript views.



 For accessing the database, we can utilize 
the Database.CouchDB module.

 It encodes the data into the JSON format 
using the Text.JSON module.

 All the interactions are encapsulated inside 
a custom monad.

data CouchMonad a =
CouchMonad (CouchConn -> IO (a, CouchConn))



> conn <- createCouchConn "localhost" 5984

> let sp = db "south_park"

> let eric = JSObject $ toJSObject

[("name", JSString $ toJSString "Eric Cartman"),

 ("age", JSRational False 9)]

> (doc, rev) <- runCouchDBWith conn $ newDoc sp eric

> do {(Just (_, _, x)) <- runCouchDBWith conn $ getDoc
sp doc; putStrLn . render $ pp_value x}

{"_id": "7d4ffcae98cdba9a7f6992470a00115e",

"_rev": "1-28be4e4fca34e9811b4fbc85eb7aaea4",

"name": "Eric Cartman", "age": 9}



 We have implemented the Persistent interface 
for CouchDB using the Database.CouchDB
module, which had had to be fixed first.

 The basic element — a custom Reader
monad.

 Our module generates necessary JavaScript 
code for data filtering.

 All the Persistent’s functionality has been 
successfully covered.





 Refactor the module in accordance 
with the recent Persistent’s conceptual 
changes.

 Improve efficiency of the code. (Other 
changes to the CouchDB library are probably 
needed.)

 Test the interface extensively in order to 
declare it stable.



Thank you for your attention.

Do you have any questions?


