
Bc. Pavel Dvořák

FI MUNI



 To describe methods used for development 
of web applications written in the Haskell 
programming language.



 The fundamental communication protocol 
of the Web.

 Client sends an HTTP request to a web server. 
The server returns a proper HTTP response.

 Such an interaction is stateless.

 The HTTP specification determines what 
should such a request and a response look 
like.

communicate :: Request -> IO Response



 Our web application has to be run along 
with a web server that listens on a specified 
port.

 Every time when the server receives a request, 
the server passes the request 
to the application and waits for the result.

 In Haskell, there are various possibilities 
for web content serving.



 Common Gateway Interface is a link 
between a web server and a web application.

 With a right configuration, we can run Haskell 
on one of the widely used web servers 
such as Apache or lighttpd.

 Unlike the regular CGI, FastCGI is able to 
process more requests at once, which 
reduces the overhead.

main :: IO ()
main = runFastCGIConcurrent 8 $ output "Hello, world!"



 WAI is a web interface, Warp is a web server.

 They are both written completely in Haskell 
and take advantage of the Iteratee
enumerator.

 The combination is the fastest native way 
for running Haskell web applications.

main :: IO ()
main = run 8000 (const . return $

responseLBS statusOK [] "Hello, world!")



 A collection of libraries designated 
for a specified task, in this case for web 
application development.

 Provides facilities for DBMS, template 
processing, URL mapping…

 In Haskell, there are more than a dozen 
of web frameworks available.



 One of the oldest Haskell frameworks.

 A relatively large piece of software; there is 
a lite version available, though.

 The state of the application can be saved and 
retrieved using the MACID monad.



 A young web framework.

 It provides reusable web components called
snaplets, which are similar to Java applets.

 That means that the framework is very
customisable.



 Also a young framework.

 The WAI and Warp packages originated
from Yesod.

 It employs massively Template Haskell, 
a metaprogramming extension.



 There is no single way to write a web 
application in Haskell.



 To improve substantially one of the described 
Haskell web frameworks.



 A unified interface between one of the several 
database management systems and 
the Yesod web framework.

 Persistent derives a database scheme 
from a data structure in our web application 
and automatically generates database 
queries.

 Currently, it supports PostgreSQL, SQLite, 
MySQL, and MongoDB.



share [mkPersist sqlSettings, mkMigrate "migrateAll"] [persist|
Person

firstName String
lastName String
age Int
PersonName firstName lastName

|]

main :: IO ()
main = withSqliteConn ":memory:" $ runSqlConn $ do

runMigration migrateAll
johnId <- insert $ Person "John" "Doe" 26
x <- selectList [PersonAge >. 21] [LimitTo 10]
liftIO $ print x
return ()



 A NoSQL, document-oriented database 
system written in Erlang.

 Reliable, fault-tolerant, highly concurrent.

 It provides a RESTful web service together 
with a user-friendly web interface called 
Futon.

 Every piece of information is encoded 
into the JSON format.

 Data transformation done by JavaScript views.



 For accessing the database, we can utilize 
the Database.CouchDB module.

 It encodes the data into the JSON format 
using the Text.JSON module.

 All the interactions are encapsulated inside 
a custom monad.

data CouchMonad a =
CouchMonad (CouchConn -> IO (a, CouchConn))



> conn <- createCouchConn "localhost" 5984

> let sp = db "south_park"

> let eric = JSObject $ toJSObject

[("name", JSString $ toJSString "Eric Cartman"),

 ("age", JSRational False 9)]

> (doc, rev) <- runCouchDBWith conn $ newDoc sp eric

> do {(Just (_, _, x)) <- runCouchDBWith conn $ getDoc
sp doc; putStrLn . render $ pp_value x}

{"_id": "7d4ffcae98cdba9a7f6992470a00115e",

"_rev": "1-28be4e4fca34e9811b4fbc85eb7aaea4",

"name": "Eric Cartman", "age": 9}



 We have implemented the Persistent interface 
for CouchDB using the Database.CouchDB
module, which had had to be fixed first.

 The basic element — a custom Reader
monad.

 Our module generates necessary JavaScript 
code for data filtering.

 All the Persistent’s functionality has been 
successfully covered.





 Refactor the module in accordance 
with the recent Persistent’s conceptual 
changes.

 Improve efficiency of the code. (Other 
changes to the CouchDB library are probably 
needed.)

 Test the interface extensively in order to 
declare it stable.



Thank you for your attention.

Do you have any questions?


